Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2424, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499564

RESUMO

The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.

2.
Front Public Health ; 11: 1222389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965519

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan city, in the Hubei province of China. Since then, it has spread practically all over the world, disrupting many human activities. In temperate climates overwhelming evidence indicates that its incidence increases significantly during the cold season. Italy was one of the first nations, in which COVID-19 reached epidemic proportions, already at the beginning of 2020. There is therefore enough data to perform a systematic investigation of the correlation between the spread of the virus and the environmental conditions. The objective of this study is the investigation of the relationship between the virus diffusion and the weather, including temperature, wind, humidity and air quality, before the rollout of any vaccine and including rapid variation of the pollutants (not only their long term effects as reported in the literature). Regarding them methodology, given the complexity of the problem and the sparse data, robust statistical tools based on ranking (Spearman and Kendall correlation coefficients) and innovative dynamical system analysis techniques (recurrence plots) have been deployed to disentangle the different influences. In terms of results, the evidence indicates that, even if temperature plays a fundamental role, the morbidity of COVID-19 depends also on other factors. At the aggregate level of major cities, air pollution and the environmental quantities affecting it, particularly the wind intensity, have no negligible effect. This evidence should motivate a rethinking of the public policies related to the containment of this type of airborne infectious diseases, particularly information gathering and traffic management.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Cidades/epidemiologia , SARS-CoV-2 , Itália/epidemiologia , Morbidade
3.
Entropy (Basel) ; 22(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33286547

RESUMO

Advanced time series analysis and causality detection techniques have been successfully applied to the assessment of synchronization experiments in tokamaks, such as Edge Localized Modes (ELMs) and sawtooth pacing. Lag synchronization is a typical strategy for fusion plasma instability control by pace-making techniques. The major difficulty, in evaluating the efficiency of the pacing methods, is the coexistence of the causal effects with the periodic or quasi-periodic nature of the plasma instabilities. In the present work, a set of methods based on the image representation of time series, are investigated as tools for evaluating the efficiency of the pace-making techniques. The main options rely on the Gramian Angular Field (GAF), the Markov Transition Field (MTF), previously used for time series classification, and the Chaos Game Representation (CGR), employed for the visualization of large collections of long time series. The paper proposes an original variation of the Markov Transition Matrix, defined for a couple of time series. Additionally, a recently proposed method, based on the mapping of time series as cross-visibility networks and their representation as images, is included in this study. The performances of the method are evaluated on synthetic data and applied to JET measurements.

4.
Entropy (Basel) ; 22(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33286636

RESUMO

This article describes a refinement of recurrence analysis to determine the delay in the causal influence between a driver and a target, in the presence of additional perturbations affecting the time series of the response observable. The methodology is based on the definition of a new type of recurrence plots, the Conditional Joint Recurrence plot. The potential of the proposed approach resides in the great flexibility of recurrence plots themselves, which allows extending the technique to more than three quantities. Autoregressive time series, both linear and nonlinear, with different couplings and percentage of additive Gaussian noise have been investigated in detail, with and without outliers. The approach has also been applied to the case of synthetic periodic signals, representing realistic situations of synchronization experiments in thermonuclear fusion. The results obtained have been very positive; the proposed Conditional Joint Recurrence plots have always managed to identify the right interval of the causal influences and are very competitive with alternative techniques such as the Conditional Transfer Entropy.

5.
Sci Rep ; 9(1): 17880, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784604

RESUMO

The application of data driven machine learning and advanced statistical tools to complex physics experiments, such as Magnetic Confinement Nuclear Fusion, can be problematic, due the varying conditions of the systems to be studied. In particular, new experiments have to be planned in unexplored regions of the operational space. As a consequence, care must be taken because the input quantities used to train and test the performance of the analysis tools are not necessarily sampled by the same probability distribution as in the final applications. The regressors and dependent variables cannot therefore be assumed to verify the i.i.d. (independent and identical distribution) hypothesis and learning has therefore to take place under non stationary conditions. In the present paper, a new data driven methodology is proposed to guide planning of experiments, to explore the operational space and to optimise performance. The approach is based on the falsification of existing models. The deployment of Symbolic Regression via Genetic Programming to the available data is used to identify a set of candidate models, using the method of the Pareto Frontier. The confidence intervals for the predictions of such models are then used to find the best region of the parameter space for their falsification, where the next set of experiments can be most profitably carried out. Extensive numerical tests and applications to the scaling laws in Tokamaks prove the viability of the proposed methodology.

6.
Entropy (Basel) ; 21(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-33267497

RESUMO

Malaria, a disease with major health and socio-economic impacts, is driven by multiple factors, including a complex interaction with various climatic variables. In this paper, five methods developed for inferring causal relations between dynamic processes based on the information encapsulated in time series are applied on cases previously studied in literature by means of statistical methods. The causality detection techniques investigated in the paper are: a version of the kernel Granger causality, transfer entropy, recurrence plot, causal decomposition and complex networks. The methods provide coherent results giving a quite good confidence in the conclusions.

7.
Rev Sci Instrum ; 89(5): 053504, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864891

RESUMO

The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.

8.
Entropy (Basel) ; 20(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33266615

RESUMO

A new measure for the characterization of interconnected dynamical systems coupling is proposed. The method is based on the representation of time series as weighted cross-visibility networks. The weights are introduced as the metric distance between connected nodes. The structure of the networks, depending on the coupling strength, is quantified via the entropy of the weighted adjacency matrix. The method has been tested on several coupled model systems with different individual properties. The results show that the proposed measure is able to distinguish the degree of coupling of the studied dynamical systems. The original use of the geodesic distance on Gaussian manifolds as a metric distance, which is able to take into account the noise inherently superimposed on the experimental data, provides significantly better results in the calculation of the entropy, improving the reliability of the coupling estimates. The application to the interaction between the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole and to the influence of ENSO on influenza pandemic occurrence illustrates the potential of the method for real-life problems.

9.
Rev Sci Instrum ; 87(1): 013502, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827316

RESUMO

The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...